Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 14: 100250, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35449800

RESUMO

Cells sense and respond to mechanical cues from the surrounding substrate through filopodia. Regulation of cellular biomechanics operates at the nanoscale. Therefore, a better understanding of the relationship between filopodia and nanoscale surface features is highly relevant for the rational design of implant surfaces. The objective of this work was to determine the biomechanical contribution of filopodia and their nanoprotrusions to the adhesive interaction of cells with nanostructured surfaces. We have also analyzed the functional changes of entire cells subjected to an external force. MC3T3-E1 osteogenic cells were cultured on polished (Ti-Control) and nanotextured titanium discs (Ti-Nano). An AFM approach was used to measure the lateral detachment force of filopodia. Filopodia on Ti-Nano exhibited higher resistance to a lateral detachment force, which indicates that they adhere to the surface with more strength. SEM analysis revealed a restructuration of the cell membrane in response to centrifugation, being more evident on Ti-Nano. Fluorescence labeling also highlighted a difference in the mitochondrial footprint, a cellular compartment that provides energy for cellular processes. Together, these results show for the first time that surface topography can change the adhesive interaction of a subcellular structure that is fundamental in sensing physico-chemical surfaces features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...